Matplotlib

Matplotlib 是一款用于数据可视化的 Python 软件包,支持跨平台运行

安装

说明链接

1
pip install matplotlib

使用Agg无法显示,使用

1
2
print (matplotlib.get_backend())
matplotlib.use('TkAgg')

绘图类型

函数名称 描述
Bar 绘制条形图
Barh 绘制水平条形图
Boxplot 绘制箱型图
Hist 绘制直方图
his2d 绘制2D直方图
Pie 绘制饼状图
Plot 在坐标轴上画线或者标记
Polar 绘制极坐标图
Scatter 绘制x与y的散点图
Stackplot 绘制堆叠图
Stem 用来绘制二维离散数据绘制(又称为“火柴图”)
Step 绘制阶梯图
Quiver 绘制一个二维按箭头

Image函数

函数名称 描述
Imread 从文件中读取图像的数据并形成数组。
Imsave 将数组另存为图像文件。
Imshow 在数轴区域内显示图像。

Axis函数

函数名称 描述
Axes 在画布(Figure)中添加轴
Text 向轴添加文本
Title 设置当前轴的标题
Xlabel 设置x轴标签
Xlim 获取或者设置x轴区间大小
Xscale 设置x轴缩放比例
Xticks 获取或设置x轴刻标和相应标签
Ylabel 设置y轴的标签
Ylim 获取或设置y轴的区间大小
Yscale 设置y轴的缩放比例
Yticks 获取或设置y轴的刻标和相应标签

Figure函数

函数名称 描述
Figtext 在画布上添加文本
Figure 创建一个新画布
Show 显示数字
Savefig 保存当前画布
Close 关闭画布窗口

中文

1
2
3
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#绘制折线图
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #正常显示负号
year = [2017, 2018, 2019, 2020]
people = [20, 40, 60, 70]
#生成图表
plt.plot(year, people)
plt.xlabel('年份')
plt.ylabel('人口')
plt.title('人口增长')
#设置纵坐标刻度
plt.yticks([0, 20, 40, 60, 80])
#设置填充选项:参数分别对应横坐标,纵坐标,纵坐标填充起始值,填充颜色
plt.fill_between(year, people, 20, color = 'green')
#显示图表
plt.show()

设置刻度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import matplotlib.pyplot as plt
import numpy as np
import math
x = np.arange(0, math.pi*2, 0.05)
#生成画布对象
fig = plt.figure()
#添加绘图区域
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
y = np.sin(x)
ax.plot(x, y)
#设置x轴标签
ax.set_xlabel('angle')
ax.set_title('sine')
ax.set_xticks([0,2,4,6])
#设置x轴刻度标签
ax.set_xticklabels(['zero','two','four','six'])
#设置y轴刻度
ax.set_yticks([-1,0,1])
plt.show()

坐标轴

在一个函数图像中,有时自变量 x 与因变量 y 是指数对应关系,这时需要将坐标轴刻度设置为对数刻度。Matplotlib 通过 axes 对象的xscale或yscale属性来实现对坐标轴的格式设置。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import matplotlib.pyplot as plt
import numpy as np
import math
x = np.arange(0, math.pi*2, 0.05)
#生成画布对象
fig = plt.figure()
#添加绘图区域
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
y = np.sin(x)
ax.plot(x, y)
#设置x轴标签
ax.set_xlabel('angle')
ax.set_title('sine')
ax.set_xticks([0,2,4,6])
#设置x轴刻度标签
ax.set_xticklabels(['zero','two','four','six'])
#设置y轴刻度
ax.set_yticks([-1,0,1])
plt.show()

csv数据显示例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import matplotlib
import csv
import matplotlib.pyplot as plt
# import pandas_profiling
matplotlib.use('TkAgg')
# print (matplotlib.get_backend())

datafile = open("./data.csv")
dataread = csv.reader(datafile)
datalist = list(dataread)
dataline = len(datalist)
datarow = len(datalist[0])

x = list()
y = list()
z = list()
for i in range(0,dataline):
x.append(float(datalist[i][0]))
y.append(float(datalist[i][1]))
z.append(float(datalist[i][2]))

# squares = [1, 4, 9, 16, 25]
# x = [1,3,4,5,6]
# 它是用来创建 总画布/figure“窗口”的,有figure就可以在上边(或其中一个子网格/subplot上)作图了,(fig:是figure的缩写)
fig,ax = plt.subplots()
ax.plot(x,y,'r.-')
ax.plot(x,z,'b.-')
plt.show()
-->

请我喝杯咖啡吧~

支付宝
微信